For a better view on Inspire Cayman Training, Update Your Browser.

MLOps with MLflow (Online Courses)

Elevate your career trajectory with our premier online course, designed to sharpen your competitive edge. Explore our curated selection of top-tier digital programs to hone your skills and propel your professional journey forward. Experience transformative learning tailored to empower your career advancement in today's dynamic landscape.
Course Category
Price on Request
Start Learning
This Course Includes
  • 11 hours 45 minutes
    of self-paced video lessons
  • 7 Programs
    crafting your path to success
  • Completion Certificate
    awarded on course completion

MLOps with MLflow: Creating & Tracking ML Models

Price on Request 1 hour 45 minutes
With MLflow's tracking capabilities, you can easily log and monitor experiments, keeping track of various model runs, hyperparameters, and performance metrics. In this course, you will dive hands-on into implementing the ML workflow, including data preprocessing and visualization. You will focus on loading, cleaning, and analyzing data for machine learning. You will visualize data with box plots, heatmaps, and other plots and use the Pandas profiling tool to get a comprehensive view of your data. Next, you will dive deeper into MLflow Tracking and explore features that enhance experimentation and model development. You will create MLflow experiments to group runs and manage them effectively. You will compare multiple models and visualize performance using the MLflow user interface (UI), which can aid in model selection for further optimization and deployment. Finally, you will explore the capabilities of MLflow autologging to automatically record experiment metrics and artifacts and streamline the tracking process.
Perks of Course
Certificate: Yes
CPD Points: 105
Compliance Standards: AICC

MLOps with MLflow: Creating Time-series Models & Evaluating Models

Price on Request 1 hour 25 minutes
MLflow integrates with Prophet, a powerful time-series model that considers seasonal effects. MLflow provides a variety of model evaluation capabilities, empowering you to thoroughly assess and analyze model performance. First, you will use Prophet in combination with MLflow for time-series forecasting. Integrating Prophet with MLflow's tracking capabilities, you will seamlessly manage and evaluate your time-series models. Running the Prophet model and viewing metrics will allow you to assess its forecasting performance. Cross-validation will enhance the evaluation process, ensuring reliability across different temporal windows. Then, you will use MLflow to evaluate machine learning (ML) models effectively. MLflow's evaluation capabilities, including Lift curves, Receiver Operating Characteristic-Area Under the Curve (ROC-AUC) curves, precision-recall curves, and beeswarm charts, provide valuable insights into model behavior and performance. Finally, you will use MLflow to configure thresholds for model metrics and only validate those models which meet this threshold.
Perks of Course
Certificate: Yes
CPD Points: 83
Compliance Standards: AICC

MLOps with MLflow: Getting Started

Price on Request 1 hour 25 minutes
MLflow plays a crucial role in systemizing the machine learning (ML) workflow by providing a unified platform that seamlessly integrates different stages of the ML life cycle. In the course, you will delve into the theoretical aspects of the end-to-end machine learning workflow, covering data preprocessing and visualization. You will learn the importance of data cleaning and feature engineering to prepare datasets for model training. You will explore the MLflow platform that streamlines experiment tracking, model versioning, and deployment management, aiding in better collaboration and model reproducibility. Next, you will explore MLflow's core components, understanding their significance in data science and model deployment. You'll dive into the Model Registry that enables organized model versioning and explore MLflow Tracking as a powerful tool for logging and visualizing experiment metrics and model performance. Finally, you'll focus on practical aspects, including setting up MLflow in a virtual environment, understanding the user interface, and integrating MLflow capabilities into Jupyter notebooks.
Perks of Course
Certificate: Yes
CPD Points: 87
Compliance Standards: AICC

MLOps with MLflow: Hyperparameter Tuning ML Models

Price on Request 1 hour 35 minutes
Hyperparameter tuning, an essential step to improve model performance, involves modifying a model's parameters to find the best combination for optimal results. The integration of MLflow with Databricks unlocks a powerful combination that enhances the machine learning (ML) workflow. First, you will explore the collaborative potential between MLflow and Databricks for machine learning projects. You will learn to create an Azure Databricks workspace and run MLflow models using notebooks in Databricks, establishing a robust foundation for model development in a scalable environment. Additionally, you will set up Databricks File System (DBFS) as a source of model input files. Next, you will implement hyperparameter tuning using MLflow and its integration with the hyperopt library. You will define the objective function, search space, and algorithm to optimize model performance. Through systematic tracking and comparison of hyperparameter configurations with MLflow, you will find the best-performing model setups. Finally, you will integrate SQLite with MLflow, allowing efficient management and storage of experiment-run data. You will create a regression model using scikit-learn and statsmodels, comparing the processes for the two.
Perks of Course
Certificate: Yes
CPD Points: 97
Compliance Standards: AICC

MLOps with MLflow: Registering & Deploying ML Models

Price on Request 1 hour 55 minutes
The MLflow Model Registry enables easy registration and deployment of machine learning (ML) models for future use, either locally or in the cloud. It streamlines model management, facilitating collaboration among team members during model development and deployment. In this course, you will create classification models using the regular ML workflow. You'll see that visualizing and cleaning data, running experiments, and analyzing model performance using SHapley Additive exPlanations (SHAP) will provide valuable insights for decision-making. You'll also discover how programmatic comparison will aid in selecting the best-performing model. Next, you'll explore the powerful MLflow Models feature, enabling efficient model versioning and management. You'll learn how to modify registered model versions, work with different versions of the same model, and serve models to Representational State Transfer (REST) endpoints. Finally, you'll explore integrating MLflow with Azure Machine Learning, leveraging the cloud's power for model development.
Perks of Course
Certificate: Yes
CPD Points: 117
Compliance Standards: AICC

MLOps with MLflow: Tracking Deep Learning Models

Price on Request 1 hour 30 minutes
Deep learning models have revolutionized computer vision and natural language processing, enabling powerful image and text-based predictions. You will start with image-based predictions using TensorFlow. You will visualize and clean data to generate datasets ready for machine learning (ML). You will train an image classification model with TensorFlow and track metrics and artifacts using MLflow. You will register the model in MLflow for local deployment and deployment on Azure. Next, you will explore PyTorch Lightning to simplify deep learning model development and training. You will use it for image classification, setting up your model with little effort. You will then train an image classification model with MLflow for tracking, deploy it locally, and expose it for predictions using a REST endpoint. Finally, you will get an overview of large language models (LLMs) like Transformers. You will load a pre-trained Transformers-based sentiment analysis model from Hugging Face and use MLflow to track its performance and artifacts.
Perks of Course
Certificate: Yes
CPD Points: 91
Compliance Standards: AICC

MLOps with MLflow: Using MLflow Projects & Recipes

Price on Request 2 hour 10 minutes
MLflow Projects enable you to package machine learning code, data, and environment specifications for reproducibility and easy sharing. Registering projects in MLflow simplifies version control and enhances collaboration within data science teams. MLflow Recipes, on the other hand, automate and standardize machine learning tasks with pre-defined templates and configurations, promoting consistency and repeatability while allowing customization for specific applications. With recipes and projects combined, MLflow becomes a powerful tool for impactful and consistent results, streamlining data science workflows. You will start this course by learning how MLflow Projects enable you to package, share, and reproduce machine learning code. Next, you will learn about MLflow Recipes that automate machine learning tasks in reproducible environments. You will explore the MLflow Regression Template, customize its files for model training, and run the recipe to view the model's performance. Finally, you will explore running a classification recipe in Databricks and modifying YAML and code files for configuration.
Perks of Course
Certificate: Yes
CPD Points: 128
Compliance Standards: AICC