With DataFrames in pandas you can filter, aggregate, join, pivot, and manipulate data efficiently. These operations enable data analysts and scientists to work with datasets for various data-driven tasks. Prompt engineering tools are adept at generating code to make these tasks simple. You will start this course by exploring the configurations you can apply to read in your data. You'll present your problem statement to ChatGPT and explore the use of arguments to configure various aspects of the file reading, such as defining column names, and specifying which columns to include in the DataFrame. Additionally, you will learn how to read data from different sources, including JSON, Excel, and the Clipboard and write files out to these different formats. Next, you'll delve into common DataFrame operations, examine statistics on your data, rename columns, iterate over, and sort your data. As you encounter issues, you will turn to prompt engineering to help debug them. Finally, you'll explore how you can enhance your data using computed columns. You'll harness the power of two essential functions, apply and map, to transform your records. You will also focus on utilizing generative AI for code generation and you will employ the chain-of-thought prompting method to guide the chatbot in generating code effectively.
Perks of Course
Certificate: Yes
CPD Points: 96
Compliance Standards: AICC